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Abstract. Two variational methods are presented for scattering problems which do not 
require the trial functions used to satisfy prescribed boundary conditions. The methods are 
applied to a two-body system interacting via a hard-core potential. 

I, Introduction 

~n a previous paper (Hennell and Hendry 1975, to be referred to as HH), two 
Mliational methods were derived which did not require the trial functions to explicitly 
satisfy prescribed boundary conditions. These methods were applied to find the binding 
energy of a two-body nuclear system interacting via a hard-core potential. 

Alternatively, interest may lie in determining the scattering quantities associated 
With such a system. Variational methods (based on a differential equation approach) 
exist for scattering problems. The Kohn variational principle (see Schwartz 1961) is a 
Widely used method, but requires the trial functions to explicitly satisfy the prescribed 
boundary conditions. However, for the reasons given in HH, it may be convenient to 
RlaK this condition on the trial function. 

Within the framework of complementary variational principles (Arthurs 1970), 
Anderson er al (1970a) have developed variational methods, for upper and lower 
bunds on the scattering length, which do not necessarily require the trial functions to 
Qhfy the boundary conditions. 

It Should be noted that if the scattering problem is approached by way of an integral 
equation, then any variational method derived does not require boundary conditions 
On fie trial functions (Anderson et al 1970a, b). 

In this paper, possible extensions of the ideas d HH are used to derive variational 
methods for scattering problems. The methods presented here are similar to the 
mnventional Kohn variational principle (referred to as CKVP throughout), in that they 

to it if the trial €unctions do satisfy the boundary conditions. 
In $5 2 and 3, the methods are briefly outlined, whilst in 00 4 and 5 they are applied 

nuclear system considered in HH. Some comments on the methods and results 
are contained in 0 6 .  

fiOughout this paper, the hard-core potential used is the ' S o  potential of Hamada 
andJohnston (1962, to be referred to as HJ) with the strength adjusted by a factor of 1.4 
fcreonsistency with HH. 
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2. Method1 

n e  s-wave scattering of a two-body system is described by 

d2 
dr2 2= - -+V(r) -k2  (2.1) 2 u  = 0, 

where V(r) is the potential describing the force between the particles and k2  is the 
energy. 

Asymptotically ( r  + CD) 

u+[(sin k r ) / k ] + q  cos kr (2.20) 

4 =(tan 6 ) / k  

and 

with S being the scattering phase shift. Associated with (2.1) will be a boundary 
condition 

&U = 0, r = c  (2.26) 

where Jc1 is some suitable operator. The solution of (2.1), subject to (2 .2~)  can be 
written as 

U = F+ 4 G  + w 

where as r + 43, 

F+(sin k r ) / k  G + cos kr w+o.  

Nuttall (1969) has shown that (2.1) may then be written as the inhomogeneous matrir 
operator equation, 

L Y = P  ( 2 . 3 4  

where 

and 

Here (,) is the usual inner product defined over the region of interest and (G9.1 
means that something has still to be included in the inner product when the matrix 
multiplication takes place. Similarly, boundary condition (2.2b) can be written 

MY=Q (2.3b) 

with 

In (2.3b), ( , )B is the inner product defined on the boundary. Further details of theinner 
products can be found in HH. 
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fie variational method described in 0 2 of HH can now be used to determine the 
&tion of the inhomogeneous equations (2.3). We first define generalized inner 

{ , } for vectors Y i  = [:I by 

{Yl, Y2}= (w1, wz)+qlq2 

{ql, Y 2 ) B = ( W 1 ,  W 2 ) B f q l q 2 .  

,lsk m, introduce the functional 

l(q,Q)=({% L$}-{'% p)-{p,  $))+p({% M$}B-{V, Q)B-{Q, $1~) (2.4) 

dhe equations adjoint to (2.3) 

L+q = P, M + q  = Q. 

Then the functional I is stationary about the true solution Y of the direct problem (ie 
(1.3)) for variations ST in the adjoint vector 7 and vice uersa. For further details, see 
Wgold (1968). As usual we expand 77, V in terms of a complete set hi (which does not 
&fy the prescribed boundary conditions) 

andinsert into functional (2.4). The stationary value of the functional then gives the set 
d(N+l)  linear equations 

Inequation (2.5) the quantities which arise are, 

8m ( N x  N )  matrix, elements H,, = (h,, %,)+P(h,, Ah,), 

IING N-row vector, elements H I G  = (h,, 2 G )  +P(h,, AG), 

& N-column vector, elements HG, = (G, 2h,)+P(G, A h , ) ,  
HGG scalar, 

RNF N-row vector, elements -RIF=(h, ,  3F)+P(hl, AF)B 
R 3 F  scalar, 

4 N-row vector, elements a,. 

nesbcture of equation (2.5) is very similar to that of the first-order estimate of the 
QW The essential difference is that the H,,, etc, now include a term associated with the 
bujldarY condition. The solution of equation (2.5) can be found in the usual way by 
S''%a set of N x  N linear equations (see Delves 1973, 0 5.1.3 for details). 

element HGG = (G, 2 G )  + p (G, AG)B 

element -RGF = (G, 2 F )  + P (G, AF)B 

3. Method U 

(8  3), a variational method for an eigenvalue problem was derived from the 
EOaventional Rayleigh-Ritz principle by relaxing the boundary conditions on the trial 
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functions and addingacompensating term to the variational functional. Here wedot$ 
same thing for the CKVP. 

Asin $2, werequire tosolve(2.l)subject to theasymptoticcondition (2.2b)withk 
boundary condition 

u=o,  r = c. (3.11 

Delves (1973,s 5.1.2) gives a very simple derivation Of the CKVP. If we use the 
this derivation but take account of the trial function U, not satisfying condition (3.11, 
then the functional 

is stationary about the solution of (2.1) subject to condition (3.1). Here, stationaryh 
used in the sense that the difference between 41” and the exact value q is second-order 
in the error E in the trial function, ie, 

q:”= q+O(E*)+O(crdE/dr). 

Appendix 2 of HH gives the details for the analogous case of the bound state problem. 
As in 0 2, we take as trial function 

u,=F+qr(*)G+ 1 aihi 
N 

i = l  

where F, G and hi do not satisfy (3.1). Inserting this expansion into functional (3.21 
then gives the set of equations (2.5) with the p(X, term replaced by [(dX/dr)Y],=, 
for all possible combinations of X and Y. 

Havingsolved for the first-order estimate q:’) and a,, substitution into the functional 
then gives a second-order estimate q:2) of q. Note that this formalism is very similarto 
the CKVP, differing only in the matrix elements having the derivative terms at the cote 
added. Finally, here we have considered a hard-core potential (ie, boundary condition 
(3.1)), but the same technique could handle an interaction described by a boundary 
condition model (Lomon and Feshbach 1968). 

4. Method I and the HJ potential 

The theory of 0 2 has been applied to the HJ hard-core potential, 

V(r) = - 1 . 4 ~  139.4~0-08€(1+8.7E+ 10.6E2)/41.5, 

E = exp(-w)/CLr, p = 1/1415 

with the hard-core radius c = 0.486 fm. (The factor 41.5 is the usual factor when 
working in MeV and fm, and the factor 1.4 is for consistency with HH.) For this 
hard-core potential, the operator A of Q 2 is the identity operator. For functions, 
have chosen 

F = (sin k r ) / k ,  G = cos kr, hi = ri-‘ e-”‘. (4.1) 

Note that F; G and hi have the correct asymptotic form ( r  + CO) while at r = c they donut 
satisfy the prescribed boundary condition. The results obtained for method I areshoom 
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hwe 1 for two typical values of k,  corresponding to zero-energy scattering ( k  = 0) 
dafir ly  high-energy scattering ( k  = 0-7), which is equivalent to about 20 MeV). For 
& d u e  of k, results are shown for two choices of the parameter p in equation (2.5). 
m s h o ~  are the results from a CKVP CalCUhtiOn for the same system (see next 
d o n ) .  From figure l(a), it is apparent that for both values of p, the estimates qr are 
acrgingto the exact value as N increases. It is also clear that the results for the larger 

the exact solution much more rapidly than do those for the smaller p. we I(b) shows lu,(c)l as a function of N. For N sufficiently large (34), this quantity 
hrending to decrease with N, showing that the exact boundary condition at the core is 
kingreproduced. Again, the larger value of p gives the better results. 

2 6 IO 14 2 6 IO 14 
N N 

2 6 IO 14 
N 

2 6 IO 14 
N 

Figure 1. Method I for k =O.O, 0.7 (a =2.0). ( a )  qt against N ;  ( b )  lu,(c)l against N. 
-, p = 1000; *,, = 10; - - - - -, exact value from CKVP. 

The behaviour obtained here differs markedly from that of HH for method I. There, 
alarge value of p was required in order to obtain any convergence, but here a small 
dueof B can be used (provided that there is a compensating increase in the number of 
kid functions). 

The behaviour found here is similar to that found by Yates (1975) in an investigation 
of method I applied to a variety of inhomogeneous partial differential equations (with 
W a t e d  boundary conditions) over various regions. He found that the method was 
relatively insensitive to the actual value of p provided it was neither too large (which 

that the boundary conditions dominate at the expense of the equation) nor too 
small (trying to solve an equation ignoring boundary conditions). Finally, it should be 
qated that the results for k = 0.7 are not quite as good as for k = 0. This is not surprising 
9n@fOrnon-zero k ,  F and G are oscillatory whereas for k = 0 they are polynomial and 

much smoother behaviour. 

' Metbod I1 and the HJ potential 

Ibe tfieoT described in 0 3 has been applied to the system considered in § 4 using trial 
(4.1). The results obtained are shown in figure 2. Figure 2(a) shows the 
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F@m 2. Method II for k = O O ,  0-7 (a'2.0). ( a )  qi2) against N ;  (b )  I&(c~ 
against N. -. method 11; *. CKVP; ---- - , exact value from CKVP. 

second-order estimate q12' for two values of k from method 11. Also shown are the 
results from a CKVP calculation for this system (ie, the boundary conditions at r = c are 
satisfied by including a suitable factor in the F and G terms and hi = ( r  - c)' e-"). It can 
be seen that as N increases the results for method I1 are converging to the same valueas 
those of the CKVP but tend to lag slightly behind. This is typical of the results of HH. 
and as observed there, is not surprising since method I1 must work harder to reproduce 
the value of q and the boundary condition at r = c. Figure 2(b) shows lut(c)l for both 
energies and as N increases this is tending to get smaller showing that the boundary 
condition is indeed being reproduced. 

As in § 4, the results for k =O are slightly better than those for k = 0.7. 

6. Condosions 

In this paper, two variational methods have been demonstrated for scattering problem 
which do not require the trial functions to satisfy the boundary conditions. These 
methods have been explicitly set up for a two-body system, but analogous methods 
could be derived for more complex situations. 

The first method requires no knowledge of derivatives, but would need the optimal 
choice of the coupling parameter /3 (which was found to be large for the system 
considered). 

The second method requires derivatives at the core, but apart from this the 
formalism is very similar to the CKVP. Furthermore the results obtained are (ah")as 
good. It is also apparent from the figures that method I gives results which converge 
much less rapidly than do the corresponding results for method 11. This can be easily 
understood. In method I, qt is obtained from the solution of a set of linear equations 
(2.5) and is a first-order estimate of 4. However, in method 11, the first-order estimate 
4;" is fed into functional (3.2) to give a second-order estimate #'of q. Hence we 
method II to give a better convergence rate than method I. 

Thus the results obtained here, taken together with those of HH, show that it is 
possible to determine the quantities of interest in a nuclear system using variational 
methods with trial functions which do not satisfy the prescribed boundary conditions. 
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